楼梯

当前位置:   主页 > 楼梯 >

南京批发机电EAMON牌BH060A-L2-12-B2-D1-S5轴向行星齿轮箱

文章来源:ymcdkj 发布时间:2024-05-05 13:01:56

B2-D1-S5轴向行星齿轮箱
它利用静压轴承的节流原理,使压力油腔中产生足够大的静压轴承载力,从而克服了液体动压轴承启动和停止时出现的干摩擦造成主轴与轴承磨损现象,提高了主轴和轴承的使用寿命及精度保持性;轴承油腔大多采用浅腔结构,在主轴启动后,依靠浅腔阶梯效应形成的动压承载力和静压承载力叠加,大大地提高了主轴承载能力,而多腔对置结构又极大地增加了主轴刚度;高压油膜的均化作用和良好的抗振性能,保证了主轴具有很高旋转精度和运转平稳性。
南京机电:EAMON牌BH060A-L2-12-B2-D1-S5轴向行星齿轮箱


衡量行减速机性能的几个关键技术参数是:减速比,平均寿命,额定输出扭矩,回程间隙,满载效率,噪音,横向/径向受力和工作温度。输出转速与输入转速的比值。
级数:太阳轮及其周围的行星轮构成独立的减速轮系,如减速机内只此一个轮系,我们称为“ ”。为得到较大减速比,需多级传动。
平均寿命: 指减速机在额定负载下,输入转速时的连续工作时间。
额定输出扭矩: 指在额定负载下长期工作时允许输出扭矩。输出扭矩是该值的两倍。 回程间隙: 将输出端固定,输入端顺时针和逆时针方向旋转,使输出端产生额定扭矩的±2%扭矩时,减速机输入端有一个微小的角位移,此角位移即为回程间隙。单位是“弧分”。
润滑方式:行星减速机在整个使用期间无需润滑。 满载效率: 指在负载情况下,减速机的传输效率。它是衡量减速机的一关键指标, 满载效率高的减速机发热少,整体性能好。
噪音:单位是分贝(dB)A。此数值是在输入转速为3000转/分钟时,不带负载,距离减速机一米距离时测量的。


南京机电:EAMON牌BH060A-L2-12-B2-D1-S5轴向行星齿轮箱

通用减速机的选型包括提出原始条件、选择类型、确定规格等步骤。 相比之下,类型选择比较简单,而准确减速器的工况条件,掌握减速器的设计、和使用特点是通用减速器正确合理选择规格的关键。 规格选择要满足强度、热平衡、轴伸部位承受径向载荷等条件。
拆卸蜗轮蜗杆减速机厢盖
1、用扳手拆下轴承端盖的紧固螺钉.
2、用扳手或套筒扳手拆卸上,下厢体之间的连接螺栓;拆下销钉.将螺钉,螺栓,垫圈,螺母和销钉等放在塑料盘中,以免丢失.然后拧动启盖螺钉卸下厢盖.



减速机的2个重要概念
对于伺服专用减速机,不论何种形式,通常都会涉及后面讨论的性能指标。然而,可能是由于商业上需要,通常各个厂家并没有对其样本上的各种参数出明确的定义,这给产品的对比带来一定的困难,所以,在讨论指标之前,我们先明确两个描述齿轮箱工作状况的重要概念
1, 占空比(Duty cycle) (ED)
占空比指的是减速机在一个完整的工作周期内,实际动作的时间占到整个工作周期时间的一个百分比。这是判定工作模式是S1(连续工作)还是间歇工作(S5)的一个参数,计算如下:占空比ED=(加速时间+工作时间+减速时间) / (加速时间+工作时间+减速时间+停顿时间)
2, 工作模式(S1,S5)
工作模式标准概念源自于电机应用,是由电子委员会(International Electrotechnical Commission)设立的。后来引申为所有以电机驱动为主要驱动源的传动部件的工作模式。
S1 – 连续工作模式,在恒定负载下运行一段时间以达到电机的热平衡。“热平衡”指温度升达某个数值后不再上升,通过有效散热与周围环境达到温度平衡的状态。
但是由于不同产品的温限不同,通常是用产品的各种零件中热稳定值 弱的部分,比如电机一般指线圈,而齿轮箱一般指润滑脂,因为温度太高可能破坏油膜的稳定性。图B-18示典型电机升温曲线,
时间长了进入了“热平衡”状态
在齿轮箱应用中,厂家根据其实验数据,往往会给出具体的数值来定义工作模式。
S1工作模式(连续工作模式)是指齿轮箱不间断工作超过15(20)分钟,或者工作占空比大于60%,并且齿轮箱的温度不能超过90(70)℃。()里的数据是有些厂家的不同数值。----工业界的标准够乱吧!
S5 工作模式(间歇工作模式)是指工作占空比小于60%,另外需要考核起停频率,也就是说在一个小时内的起停次数不能超过1000次,否则需要在计算力矩时,要乘以冲击系数Fs。
值得注意的是:在实际选型使用中,我们往往遗漏工作模式,脱离工作模式的额定力矩指标,是不可以作为选型指标使用的,这点在实际选型中往往会被忽略,进而导致减速机使用中出现意外损坏问题。

南京机电:EAMON牌BH060A-L2-12-B2-D1-S5轴向行星齿轮箱

br>
加湿的过程其实就是提高水气分压力, 初的加湿方式就是向试验箱壁喷淋水,通过控制水温便水使水表面饱和压力得到控制,箱壁表面的水形成较大的面,在这个面上扩散向箱内加入水气压使试验箱中的相对湿度升高,这一方法 初使用于上个世纪五十年代。由于当时相对湿度的控制主要是用 电接点式导电表进行简单的关量调节,对于大滞后的热水箱水温的控制适应性比较差,控制的过渡过程较长,不能满 变湿热对加湿量要求较多的需量,更重要的是对箱壁喷淋的时候,会不可避免的有水滴淋在试验产品上而对试验产品形成不同程度的污染,同时对箱内排水也有一定的要求。